Estrogen stimulates neuronal nitric oxide synthase protein expression in human neutrophils.
نویسندگان
چکیده
Recent studies have postulated the contribution of nitric oxide (NO) released by the endothelium to the beneficial effects of estrogen. Despite a neuronal-type NO synthase (nNOS) described in neutrophils, less is known about the effect of estrogen in these cells. The aim of the present study was to analyze the expression of nNOS protein in human neutrophils under different estrogenic conditions. We first analyzed nNOS expression in neutrophils obtained from premenopausal women. During the first 2 days of the follicular phase (low circulating estrogen concentrations), nNOS expression in neutrophils was reduced with respect to that found in neutrophils obtained from the same donors during the ovulatory phase (high circulating estrogen concentrations). Moreover, the expression of nNOS protein in neutrophils obtained from postmenopausal women after transdermal estrogen therapy was markedly enhanced with respect to that observed before the treatment. In vitro incubation of neutrophils derived from men for 6 hours with 17beta-estradiol (10(-10) to 10(-8) mol/L) upregulated the expression of nNOS protein. The 17beta-estradiol receptor antagonists, tamoxifen (10(-8) mol/L) and ICI 182780 (10(-8) mol/L), inhibited the upregulation of nNOS protein induced by 17beta-estradiol. The putative functional implication was denoted by a reduced expression of the CD18 antigen on the surface of 17beta-estradiol-incubated neutrophils, which was accompanied by a decreased adhesive capacity. Both effects were prevented by an NO antagonist. In conclusion, the in vivo levels of circulating estrogen concentrations seem to be associated with the level of nNOS protein expression in neutrophils from women. Moreover, low doses of 17beta-estradiol upregulate nNOS protein expression in neutrophils from men. The increased ability of 17beta-estradiol-incubated neutrophils derived from men to produce NO reduced their adhesive properties.
منابع مشابه
Effect of 17-? Estradiol on the Expression of Inducible Nitric oxide Synthase in Parent and Tamoxifen Resistant T47D Breast Cancer Cells
Indirect evidence suggests that estrogen is involved in the etiology of breast cancer. Estrogen is also thought to modulate nitric oxide (NO) in human breast tumor tissue via regulation of inducible nitric oxide synthase (iNOS). Objectives of this study were to determine whether estradiol (E2) affects iNOS expression level in breast cancer cells and to study the effect of various concentrations...
متن کاملEffect of 17-? Estradiol on the Expression of Inducible Nitric oxide Synthase in Parent and Tamoxifen Resistant T47D Breast Cancer Cells
Indirect evidence suggests that estrogen is involved in the etiology of breast cancer. Estrogen is also thought to modulate nitric oxide (NO) in human breast tumor tissue via regulation of inducible nitric oxide synthase (iNOS). Objectives of this study were to determine whether estradiol (E2) affects iNOS expression level in breast cancer cells and to study the effect of various concentrations...
متن کاملEffect of Neutrophils on Nitric Oxide Production from Stimulated Macrophages
Background: During the initial phase of an infection, there is an upregulation of inducible nitric oxide synthase in the macrophages for the production of nitric oxide. This is followed by the recruitment of polymorphonuclear leukocytes (neutrophils) which release arginase. Arginase competes with inducible nitric oxide synthase for a common substrate L-arginine. Objective: To investigate whethe...
متن کاملEXPRESSION OF INDUCIBLE NITRIC OXIDE SYNTHASE GENE (iNOS) STIMULATED BY HYDROGEN PEROXIDE IN HUMAN ENDOTHELIAL CELLS
Inducible nitric oxide synthase (iNOS) gene expresses a calcium calmudolin-independent enzyme which can catalyse NO production from L-arginine. The induction of iNOS activity has been demonstrated in a wide variety of cell types under stimulation with cytokines and lipopoly saccharide (LPS). Previous studies indicated that all nitric oxide synthases (NOS) activated in human umbilical vein endot...
متن کاملAGE proteins as a causative factor in Alzheimer's Disease
The reaction between reducing sugars and protein free amines, known as the Maillar reaction results in the formation of advanced glycation endproducts (AGEs). AGE modification changes the structure of proteins to amyloid cross-beta structure. These protein structures can activate receptors known as RAGE on glial cells (microglia and astrocytes), and induce the expression of inducible nitric oxi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 85 11 شماره
صفحات -
تاریخ انتشار 1999